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a b s t r a c t 

Multiple query criteria active learning methods have a higher potential performance than conventional 

active learning methods in which only one criterion is deployed for sample selection. A central issue 

related to multiple query criteria active learning methods concerns the development of an integration 

criteria strategy that makes full use of all criteria. The conventional integration criteria strategies adopted 

in relevant research facilitate the desired effects, but several limitations still must be addressed. For in- 

stance, some of the strategies are not sufficiently scalable during the design process, and the number and 

type of criteria involved are dictated. Thus, it is challenging for the user to integrate other criteria into 

the original process unless modifications are made to the algorithm. Other strategies are too dependent 

on empirical parameters, which can be acquired only by experience or cross-validation and thus lack 

generality; additionally, these strategies are counter to the intention of active learning, as samples need 

to be labeled in the validation set before the active learning process can begin. 

To address these limitations, we propose a novel multiple query criteria active learning method for 

classification tasks that employs a third strategy via weighted rank aggregation. The proposed method 

serves as a heuristic means to select high-value samples of high scalability and generality and is imple- 

mented through a three-step process: (1) the transformation of the sample selection to sample ranking 

and scoring, (2) the computation of the self-adaptive weights of each criterion, and (3) the weighted ag- 

gregation of each sample rank list. Ultimately, the sample at the top of the aggregated ranking list is 

the most comprehensively valuable and must be labeled. Several experiments generating 419 wins, 226 

ties and 55 losses against other state-of-the-art multiple query criteria-based methods are conducted to 

verify that the proposed method can achieve superior results. 

© 2019 Published by Elsevier Ltd. 
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. Introduction 

.1. Motivation 

Active learning (AL) is a subfield of machine learning technol-

gy that is used to minimize the amount of annotation work that

ust be executed before training an accurate classification or re-

ression model [1] . AL methods are unique in their use of various

ample query criteria (SQC). These methods can help the user se-

ect a fraction of the most ‘valuable’ samples for querying labels

rom massive volumes of unlabeled data [2–4] . On the basis of dif-

erences in the definition of ‘valuable’, AL methods can be broadly
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ivided into two categories: representativeness and informative-

ess measure-based approaches [5-6] . 

As illustrated in Fig. 1 , plenty of comparative studies [5,7] of AL

ethods have shown that most representativeness measure-based

L methods perform better when the number of labeled samples

s few, whereas others, especially those that are informativeness

easure-based, will usually overtake the former after substantial

ampling. In this paper, the above phenomenon is referred to as

the timeliness of AL’. The main explanation for this phenomenon

s that representativeness measure-based AL methods can obtain

he entire structure of a database upon their first use. However,

hese AL methods are not sensitive to samples that are close to the

ecision boundary, notwithstanding the fact that such samples are

robably more important to the prediction model. In addition, in-

ormativeness measure-based AL methods always search for ‘valu-

ble’ samples around the current decision boundary, and the opti-

al decision boundary cannot be found unless a certain number of

amples have already been labeled [8] . In other words, the single
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Fig. 1. The timeliness of AL. 
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query criterion can only guarantee its optimal performance over

a period of time in the entire AL process, and the optimal period

differs for each criterion. 

Considering the above complementary characteristics, recent re-

search reports have similarly proposed that the AL method could

likely be improved if more than one SQC were deployed through

one AL process to leverage the strengths of all methods [9] . The

multiple query criteria AL method (MQCAL) has been developed for

this purpose. The MQCAL method can combine most complemen-

tary information for each SQC through a special integration criteria

strategy. A small number of samples that meet all involved criteria

are selected for querying labels. The MQCAL method can in theory

be more reliable, effective and resistant to interference because it

takes several factors into account rather than focusing on one se-

lection criterion, as is done in conventional AL methods. However,

there are still some limitations that exist in MQCAL that require

further effort to resolve (e.g., manual weight setting, the impossi-

ble combination), which will be described in detail below. 

1.2. Related work 

Most existing AL methods are based on a single query criterion.

Representativeness and informativeness measure-based AL meth-
Fig. 2. The categories of traditional AL m
ds are the two main branches of single criterion-based AL meth-

ds as shown in Fig. 2 . The AL algorithms in the first category rely

n the native data structure, and the samples that represent the

ajority of all samples are regarded as the most representative.

ccording to the data structure expression, representativeness-

ased AL methods can be further subdivided into three classes that

nclude Clustering Analysis (e.g., Cluster [6,10] ), Sample Connection

e.g., Diversity [11] , Dissimilarity [5] , Density [12] ), and Experimen-

al Design (e.g., TED [13] , MAED [14] , Random Walks [15] ). In con-

rast, informativeness measure-based AL methods always select a

ample that has a high degree of uncertainty or is able to impart

he greatest change to the current model. Based on the number

f involved models, this method can also be further subdivided

nto two classes that include Certainty Based (e.g., Margin [1,16] ,

ntropy [17] , EER [18] ) and Committee Based (e.g., QBC [19] and

ultiple View [20] ). 

Compared with the traditional single criterion-based AL meth-

ds, existing research about the MQCAL is relatively sparse. Across

hese few studies, the selection and design of appropriate SQC for

ombining are usually their main foci of research rather than how

o integrate all involved SQC together. After a careful review of

xisting methods, only four kinds of integration criteria strategies

ave been found as shown in Fig. 3 . 

Baram et al. [21] proposed the earliest form of the MQCAL

ethod, as shown in Fig. 3 (A). For each iteration of this MQCAL,

nly one of the involved SQC with the highest criterion selection

arameters is applied to choose samples. The criterion selection

arameter is a variant of the multi-armed bandit algorithm pro-

osed in [22] . Lughofer E [6] designed a two-phase AL process. In

he first phase, the most representative samples based on cluster-

ng are selected, and a certainty-based AL approach is applied in

he second phase. These MQCAL methods are beneficial primarily

n terms of their high levels of efficiency. However, since only one

nvolved query criterion is used in each iteration, their integration

riteria strategies are more like criteria selection rather than cri-

eria integration; hence, we refer to such strategies as ‘CSAL’ for

hort in this paper. 

Shen et al. [23] developed two other integration criteria strate-

ies: parallel-form (shown in Fig. 3 (B)) and serial-form (shown in

ig. 3 (C)), both of which have been widely used in subsequent

tudies. 

Serial-form MQCAL (‘SMQCAL’ for short) employs each SQC to

elect a certain number of samples from the selection results of

he previous SQC in sequence as a multilayer filter. On the ba-

is of Shen’s work [23] , previous reports [4,11] further developed
ethods based on a single criterion. 
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Fig. 3. The existing MQCAL process (A: the process of CSAL, B: the process of PMQCAL, C: the process of SMQCAL, D: the process of MCDMAL). 
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his approach by combining clustering and uncertainty-based SQCs.

nother report [24] applied this method to connect a K nearest

eighbor-based cluster algorithm, an SVM margin algorithm and

 genetic algorithm to propose an improved AL method for hy-

erspectral image classification. Moreover, Demir et al. [25] pro-

osed SMQCAL for remote sensing images, which involves SQCs

ased on uncertainty and diversity. Similar work includes a pa-

er [26] in which samples in low-density regions were selected

mong the most uncertain samples; low-density regions are de-

ermined by exploiting the topological properties of SOM. This ap-

roach achieved fast convergence and performed well in both real

ultispectral remote sensing image classification tasks and hyper-

pectral remote sensing image classification tasks. In addition to

he above classification tasks, Demir et al. [27] demonstrated that

heir serial-form MQCAL framework can perform well in regression

asks by efficiently identifying most of the diverse samples from

igh-density regions. 

SMQCAL is efficient and operable and is widely used to address

ractical problems. In addition, the user can directly add several

dditional SQCs on the basis of the original process, which can be

egarded as strongly scalable. However, SMQCAL relies too heavily

n two important settings, including the sequence of the applied

QCs and the number of samples selected from each layer ( N i in

ig. 3 (C)), which are not generalized. 

Parallel-form MQCAL (‘PMQCAL’ for short) can select optimal

amples with regard to two different SQCs using a weighted-

um optimization function. Based on this characteristic, previous

tudies [23,28] have effectively combined uncertainty and diver-

ity to name entity recognition and natural language processing

asks, respectively. In addition, Huang et al. [5] also employed the

eighted-sum optimization function to combine the early stage-

ased SQCs with the representativeness measure-based SQCs (dis-

imilarity) to acquire satisfactory AL selection results. Other similar

tudies include recent papers [29,30] . Although the respective cri-

eria used to measure the values of the samples in each are not

he same, they all yield satisfactory results using the same basic

echanism, as shown in Fig. 3 (B): the weight parameters w 1 and

 2 are used to balance the trade-off between each involved SQC.
otably, although the integration strategy in paper [31] is rendered

s the product of two involved SQCs with a high exponent, it still

an be regarded as the deformation of a weighted-sum optimiza-

ion function and classified as a PMQCAL. To further improve par-

llel MQCAL, Huang et al. [8] developed another systematic way

f measuring and combining representativeness and informative-

ess in the same SVM framework using the min-max AL view. This

echnique can be regarded as a state-of-the-art MQCAL with strong

heoretical capacities. 

However, PMQCAL also has two limitations. First, PMQCAL is

ot scalable. Thus, it is challenging for the user to integrate other

QCs into the original process unless modifications are made to

he algorithm. Even so, the optimization function of this extended

ersion may be unsolvable. Second, PMQCAL also places too much

eliance on weight parameters. Using the wrong settings can re-

ult in suboptimal performance. Most of the above papers suggest

hat the user can directly use their recommended value [23,28] or

btain the optimal weights through cross-validation [29,30] . There-

ore, it is clear that it is also not generalizable for different applied

ata sets and is even slightly contrary to the original ideal of AL,

ecause it requires the user to prepare some extra labeled samples

s a validation set in the cross-validation process. In light of this

roblem, our group recently published an article [32] designing a

ouble-strategy AL method that is useful for mammographic mass

lassification, in which the combination weight is selected from

redefined candidate values. Of course, this approach is not the

est solution because it lacks a fine-tuning procedure. Similarly,

ue to the expectation maximization concept underlies it, this so-

ution is designed for only two SQCs, further contributing to a lack

f scalability. 

Additionally, Wang et al. [9] proposed a fourth MQCAL, as

hown in Fig. 3 (D), by transforming the problem of integration cri-

eria into a multicriteria decision-making system (termed ‘MCD-

AL’ here), which also yields good results in the multiple-instance

earning environment rather than in a classification task. However,

his method has high algorithm complexity. Its implementation

nd execution are quite difficult, and not every kind of SQC can

e integrated into their MQCAL process. 
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Furthermore, an unsolved problem concerns the establishment

of a mechanism that allows for a dynamic and adaptive tradeoff

between each SQC that is used for each AL iteration [8,11] . This

problem is addressed in most of the above works as a suggested

avenue for future research. To our knowledge, only Donmez et.al.

[7] has proposed a means of tuning the weights of two SQCs in

each iteration by calculating the estimated future residual error re-

duction level. 

1.3. Our approach – the main concept 

We realized that the sample selection problem in AL methods

is also a sample ranking problem and were inspired by the rec-

ommendation technologies that have developed in recent years.

Hence, in this manuscript, we develop a novel weighted rank

aggregation-based MQCAL for classification tasks, which can be re-

garded as a fifth form of the integration criteria strategy, which we

term ‘RMQCAL’. 

To implement the proposed method, three additional steps are

added to the framework of the original AL process, as shown

in Fig. 4 . In any iteration of the AL process, all involved SQCs

first need to be tweaked in order to invert the problem of

sample selection into sample ranking and scoring. Next, every

pair of ranking and scoring lists based on their corresponding

SQCs can be obtained from the remaining unlabeled samples (see

Section 2.2 ). Third, using the best-versus-second-best (BVSB) strat-

egy, the weights of each SQC for every iteration of the AL pro-

cess can be dynamically obtained from the current score lists (see

Section 2.3 ). Then, the rank lists of all SQCs involved are weighted

and combined as a comprehensive ranked list through our im-
Fig. 4. The process of the proposed MQCAL based on rank aggregation (red boxes indicat

color in this figure legend, the reader is referred to the web version of this article.) 
roved weighted rank aggregation method (see Section 2.4 ). The

ample ranked highest in this comprehensive ranked list is then

onsidered to be the most comprehensively valuable and the most

n need of labeling for this iteration. 

The innovation of this article manifests in both the originality of

he study object and the proposed solution. The study object of the

roposed RMQCAL focuses on the design of an integration criteria

trategy that can integrate each SQC involved rather than design-

ng several specific SQCs and adding them together using empir-

cal weight-parameter settings. Moreover, the solution of the pro-

osed RMQCAL treats criteria integration as a special rank aggrega-

ion problem to be solved using a Markov chain; this methodology

iffers com pletely from that of earlier studies. In terms of the algo-

ithm itself, RMQCAL has the following advantages over the exist-

ng MQCAL. Scalability: Similar to serial-form MQCAL, any number

nd type of SQC can be easily introduced into our RMQCAL process

ithout establishing a more complex optimization function. Unifor-

ity: The uniformity of each SQC can be guaranteed by converting

ample selection, the purpose of each SQC, into sample ranking.

enerality: Our method no longer employs any empirical parame-

ers; instead, each tradeoff behind SQCs is self-adaptive. Dynamics:

s in most papers, except in their future work, the tradeoffs be-

ween each SQC used in our method are dynamic and change ac-

ording to their differential contributions in each iteration of the

L process. 

Moreover, RMQCAL offers a potential predominance in practi-

al applications. The aim of AL methods is to reduce the annota-

ion work of unlabeled samples in hand. However, when coping

ith an unlabeled dataset in real-word problems, in order to se-

ect the most appropriate AL method and acquire optimal empirical
e the major steps of the proposed method). (For interpretation of the references to 
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arameters, a certain number of labeled samples are unavoid-

bly required to establish a validation set. Because the proposed

ethod requires no empirical parameters and has high scalability,

he users merely have to employ all candidate AL methods for se-

ection as the multiple criteria. RMQCAL can satisfactorily combine

hem as an optimal ensemble AL method with self-adaptive adjust-

ent of weights. The validation set is no longer needed, which can

etter serve the needs presented by practical problems, especially

hen the labeling cost of each sample is very expensive. 

The highlights of this work include the following. (1) To the

est of our knowledge, this is the first study to analyze and in-

uct the existing MQCAL method with different integration criteria

trategies. (2) This is also the first work to implement the MQ-

AL method by introducing weighted rank aggregation approaches,

nd the proposed framework may inspire future AL. (3) We present

 mechanism that allows for a dynamic and self-adaptive tradeoff

etween any number and kind of involved SQC in a unified system

y introducing the BVSB strategy. (4) We summarize basic rules

or the use of our RMQCAL. The potentially best combination of

nvolved SQCs and rank aggregation approaches is also found from

xperimental comparative results. (5) Several comparative exper-

ments are conducted to prove the effectiveness of the proposed

MQCAL method in many public datasets. 

The remainder of this paper is organized as follows. In

ection 2 , the framework of our RMQCAL is presented, and

he three main steps of this framework are discussed in detail.

ection 3 describes the experiments that were conducted to evalu-

te the performance of our RMQCAL and to define optimal opera-

ion parameters. In turn, the optimum combination of SQCs and

est methods for rank aggregation can be obtained. Finally, our

onclusions are presented in Section 4 . 

. Approach 

.1. Problem definition 

Assume that there is an initial dataset D that is used to train

 binary classification model with a lower labeling cost. In any it-

ration of AL process t , the entire dataset D is always divided into

wo subsets: the subset A 

( t−1 ) and U 

( t ) . U 

( t ) is the currently un-

abeled data-set, which stores | U 

( t ) | unlabeled samples u (t) 
n in the

orm of feature vectors, where n ∈ [1, ���, | U 

( t ) |], and |.| is a func-

ion that is used to calculate the length of an array. In addition,

he existing labeled dataset is defined as A 

( t−1 ) and is obtained

rom the previous iteration, which also stores the feature vector

f labeled samples as [ a (t) 
m 

, y m 

] , where m ∈ [ 1 , · · · , | A 

( t−1 ) | ] and

 m 

= { 1 , − 1 } . Through one specialized SQC F ( t ) (.) from the old

earning model h ( t−1 ) that was previously trained, a conventional

ingle criterion-based AL method selects several of the most im-

ortant samples Q 

( t ) with the highest value from U 

( t ) in each iter-

tion. Then, the labeled dataset can be reconstituted and used to

rain a new h ( t ) and update the SQC as F ( t+1 ) (. ) for the next itera-

ion t + 1( A 

(t) = A 

( t−1 ) � Q 

(t) ) . 

Most of the SQC F ( t ) (.) in the conventional AL process can be

escribed as in formula (1) : 

 

( t ) 
select 

= F ( t ) 
(
U 

( t ) , N 

)
= argmin 

V ⊂U ( t ) 

N ∑ 

n =1 

f ( t ) ( v n ) (1) 

here u (t) 
n are the elements in V ( v n ∈ V ); f ( t ) (.), which is the ker-

el function in this SQC F ( t ) (.) that is used to calculate the score

f every unlabeled sample for sample selection, according to the

xisting labeled samples A 

( t−1 ) ; N is the number of selections in

ach iteration of the AL process; | V | = N, which is usually set as 1.

Unlike the traditional AL process, the intermediate process of

QCAL involves the use of a combination of L SQC, namely, F (t) 
k 

(. )
 ∈ [1, ���, L ]. Different F (t) 
k 

(. ) have different kernel functions f (t) 
k 

(. ) .

nly the most comprehensively valuable samples that meet all

hese SQC are selected for labeling in each loop of iterations.

he kernel of MQCAL is used to establish an integration criteria

trategy that can combine most of the complementary informa-

ion of each SQC as ∧ 

k =1 
L 

(. ) . With regard to the existing MQCAL,

ncluding those that are criteria selection-based, MCDM system-

ased, parallel-form and serial-form, each of their integration cri-

eria strategy can be calculated as formula (2) , formula (3) , formula

4) , and formula (5) , respectively: 

 

( t ) 
cs = ∧ 

L 
k =1 

(
F ( 

t ) 
k 

(
U 

( t ) , N 

))
= argmi n V ⊂U ( t ) 

N ∑ 

n =1 

f ( 
t ) 

k ∗ ( v n ) (2) 

here k ∗ = argmax ( CSP (t) 
k 

) 
k ∈ [ 1 , ... , L ] 

, CSP (t) 
k 

is the criteria selection 

arameter of F (t) 
k 

(. ) in t th iteration. 

 

( t ) 
MCDM 

= ∧ 

L 
k =1 

(
F ( 

t ) 
k 

(
U 

( t ) , N 

))
= argmi n V ⊂U ( t ) 

N ∑ 

n =1 

in f o ( t ) ( v n ) (3) 

here info ( t ) represents the difference between the dominated in-

ex and the dominating index of each sample calculated by the

CDM system and F (t) 
k 

(. ) ; where w k is the weight parameter of

 

(t) 

k 
. Weight parameters are always fixed empirically or through

ross-validation. 

 

( t ) 
paral l el 

= ∧ 

L 
k =1 

(
F ( 

t ) 
k 

(
U 

( t ) , N 

))
= argmi n V ⊂U ( t ) 

N ∑ 

n =1 

L ∑ 

k =1 

w k f 
( t ) 
k 

( v n ) 

(4) 

 

( t ) 
serial 

= ∧ 

L 
k =1 

(
F ( 

t ) 
k 

(
U 

( t ) , N 

))
= F ( 

t ) 
L 

((
· · ·

(
F ( 

t ) 
2 

(
F ( 

t ) 
1 

(
U 

( t ) , N 1 

))
, N 2 

)
· · ·

)
, N L 

)
(5) 

here N k is the number of selections in layer k, and N L = N. 

Both their advantages and disadvantages are mentioned in the

revious section. 

We note that for each SQC F (t) 
k 

(. ) , the corresponding scoring list

 

(t) 
k 

of the currently unlabeled dataset U 

( t ) can be calculated by the

orresponding kernel function f (t) 
k 

(. ) , as given by formula (6) : 

 

( t ) 
k 

= 

[ 
f ( 

t ) 
k 

(
u 

( t ) 
1 

)
, . . . , f ( 

t ) 
k 

(
u 

( t ) 
n 

)
, . . . , f ( 

t ) 
k 

(
u 

( t ) 

| U ( t ) | 
)] 

(6) 

Meanwhile, the ranking list R 

(t) 
k 

of each sample in U 

( t ) can also

e easily obtained by sorting S (t) 
k 

in ascending or descending or-

er. Then, we suggest that the integration criteria strategy of our

MQCAL can be designed as formula (7) , 

 

( t ) 
RMQCAL 

== F ( t ) 
(
U 

( t ) , N 

)
= argmin V ⊂U ( t ) 

N ∑ 

n =1 

R 

( t ) 
agg 

(
v ( t ) n 

)
(7) 

here R 

(t) 
agg is the aggregated ranking list that satisfies formula (8) ;

 is the calculation of Kendall’s tau or Spearman’s footrule distance

33] ; and w k is the self-adaptive tradeoff of R 

(t) 
k 

, which is calcu-

ated by S (t) 
k 

0 

 

( t ) 
agg = argmin R 

1 

L 

L ∑ 

k =1 

w k K 

(
R, R 

( t ) 
k 

)
(8) 

Then, the problem of our RMQCAL can be transformed as a

eighted rank aggregation problem. In other words, three core

ontents of RMQCAL include the acquisition of S (t) 
k 

and R 

(t) 
k 

, the

eighted computation of each criterion ω k and the mechanism to

ffectively combine each SQC. These will be individually discussed

n the following three parts. 
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2.2. The transformation of the sample selection to sample ranking 

and scoring 

The purpose of this step is to obtain L different pairs of rank

and score lists S (t) 
k 

and R 

(t) 
k 

of all remaining unlabeled samples in

U 

( t ) from the L different SQCs. Because all SQCs can be described as

shown in formula (1) , the scoring lists of the currently unlabeled

dataset S (t) 
k 

can be further denoted as formula (6) , and the ranking

lists R 

(t) 
k 

are the ranking of their corresponding S (t) 
k 

from small to

large. 

As motivating examples to convey the important components

of our RMQCAL and the control methods used in this paper, the

separate scoring kernel functions f (t) 
k 

(. ) of SQCs of some typical

AL methods are written as the following: formula (9) , formula (10) ,

formula (11) and formula (12) . 

Margin-based SQC: [16] 

f ( 
t ) 

margin ( x ) = P 
(
y ∗max | x, h 

( t−1 ) 
)

(9)

Diversity-based SQC: [11] 

f ( 
t ) 

di v ersity 
( x ) = max 

⎛ 

⎝ cos −1 

⎛ 

⎝ 

K 

(
x, a ( 

t−1 ) 
m 

)
√ 

K ( x, x ) K 

(
a ( 

t−1 ) 
m 

, a ( 
t−1 ) 

m 

)
⎞ 

⎠ 

⎞ 

⎠ (10)

QBC-based SQC: [19] 

f ( 
t ) 

QBC ( x ) = −1 × σ
(
h 

( t−1 ) 
1 ( x ) , . . . , h 

( t−1 ) 
g ( x ) 

)
(11)

TED-based SQC: [13] 

f ( 
t ) 

T ED ( x ) = −1 ×
| U ( t ) | ∑ 

i =1 

Z ( : , i ) , i is the position of x in U 

( t ) (12)

where y max is the most likely label of x, κ is the kernel distance,

g is the number of committees in QBC, Z = min Z U 

(t) − U 

(t) Z 2 , 1 +
λZ 

T 
2 , 1 , s.t. Z = [ z 1 , . . . , z | U (t) | ] ∈ R | U (t) | ×| U (t) | and σ is the function

used to calculate the standard deviation. 

Because each SQC has a different AL concept, each S (t) 
k 

must be

normalized from −1.0 to 1.0 and sorted from smallest to largest as

S ∗(t) 
k 

. The following three points are worth mentioning. (1): In our

RMQCAL, we force the definition that the score of the sample with

the highest value is the lowest in the scoring list. An SQC that does

not conform to the above definition should be revised by multi-

plying it by −1. (2) When experimental design-based criteria are

included in the involved SQCs, their corresponding rank and score
Fig. 5. The score lists from several SQCs (intercepting only the scores of the top 26 most

lists from the SQCs whose rank lists are most and least reliable and the figure on the rig

in this figure, the reader is referred to the web version of this article.) 
ists need to be calculated only once before the first iteration as

 

(0) 
k 

and S ∗(0) 
k 

because the experimental design-based SQC does not

nvolve model updating, and its score list is constantly changing in

ubsequent iterations. (3) R 

(t) 
k 

from the committee-based SQC in-

ludes numerous duplicate values; thus, tie conditions applicable

or obtaining R 

(t) 
k 

should be reflected rather than assigned random

ankings. 

.3. The computation of the self-adaptive weights of each criterion 

Based on the timeliness of the AL noted above, the contribu-

ions of each criterion change in response to different stages of

he AL process. The subjective definition of each kind of SQC as its

eight, which follows from the old pattern of the serial-designed

QCAL, is not used. In our method, a dynamic weighting system

s established for calculating the self-adaptive weights of each SQC

or every iteration. 

We suggest that the rank list R 

(t) 
k 

from each involved SQC has

ts reliability and that the reliability of R 

(t) 
k 

relates not only the

esign of its corresponding SQC but also the current AL iteration

umber. The purpose of the weighting system is to ensure the al-

orithm pays more attention to the SQC whose rank lists R 

(t) 
k 

are

ore reliable for the following rank aggregation by assigning them

reater weights. 

Motivated by the work in [34] for an image retrieval task, we

elieve that the reliability of R 

(t) 
k 

from each involved SQC can also

e calculated from the distribution of its corresponding score lists

 

∗(t) 
k 

. Considering the ultimate goal of every SQC is for sample se-

ection, the score lists S ∗(t) 
k 

from the SQC with the most reliable

 

(t) 
k 

should satisfy formula (13) and appear as the red bars shown

n Fig. 5 (a), since the top-N sample selection based on such S ∗(t) 
k 

is

nique and has strong anti-interference (here we assume that the

umber of sample selections is N = 3 ). 

 

∗( t ) 
best 

( index ) 

= 

{
min 

(
S 

∗( t ) 
best 

)
, i f index ≤ N 

max 
(
S 

∗( t ) 
best 

)
, otherwise 

, index = 1 , 2 , . . . , | U 

( t ) | (13)

here S ∗(t) 
k 

( index ) is the score of the sample corresponding to in-

ex in S ∗(t) 
k 

. 

For the opposite case, the worst S ∗(t) 
k 

is a straight line repre-

ented by the purple bar shown in Fig. 5 (a), wherein all values
 valuable samples defined by three AL methods). The figure on the left is the score 

ht is the score list from the real SQCs. (For interpretation of the references to color 
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(19) 
f S ∗(t) 
k 

are the same, and the top-N sample selection is com-

letely uncertain. For practical issues, the real curves of S ∗(t) 
k 

are

ypically displayed as shown in Fig. 5 (b), and the S ∗(t) 
k 

values of

ertainty and representativeness measure-based AL are curvilinear

nd contain fewer duplicate score values. In contrast, the S ∗(t) 
k 

of a

ommittee-based AL is ladder-like and has several duplicate score

alues. 

Exploiting a similar trick for the BVSB algorithm and the three

urves of the different score lists described above, we suggest that

he more obvious the difference in one of the S ∗(t) 
k 

between the

elected samples and the almost-selected samples is, the greater

he contribution of its corresponding SQC. For this, we present a

eight-assignment method, as illustrated in formula (14) , if none

f the involved SQCs is committee based. 

w 1 

( t ) 
k 

= (S 
∗( t ) 
k 

( N ) − S 
∗( t ) 
k 

( N + 1 ) ) / (S 
∗( t ) 
k 

( 1 ) − S 
∗( t ) 
k 

(| U 

( t ) | )) , 
k ∈ not committee (14) 

For the score list of a committee-based SQC, in which the

hapes of score lists are entirely different from those in the two

ther cases, the above formula (14) cannot be applied here be-

ause its unique distribution ( S ∗(t) 
k 

(N) is likely to be equal to

 

∗(t) 
k 

( N + 1 ) ). Then, we believe that the weights between each

ommittee-based SQC can be calculated using formula (15) , as

hown below, instead. This means that the SQCs with lower like-

ihoods of the selected and almost-selected samples sharing the

ame score should be assigned a higher weight. I(.) is an indicator

unction that is equal to one if conditions within the parentheses

re satisfied; otherwise, it is equal to zero. 

 2 

( t ) 
k 

= 

| U ( t ) | ∑ 

index = N+1 

I 
(
S 

∗( t ) 
k 

( index ) � = S 
∗( t ) 
k 

( N ) 
)

| U 

( t ) | , k ∈ committee (15)

However, we have not developed a more generalized weight-

ssignment method that applies to representativeness-, certainty-

nd committee-based SQCs. When the involved SQCs in MQCAL in-

lude all three of the types listed above, the only workable revised

eight assignment scheme is written as formula (16) : where c2 is

he number of committee-based SQC, and c1 = L − c2 . 

 

( t ) 
k 

= 

{
c1 
L 

∗w 1 

( t ) 
k 

/ 
∑ 

j w 1 

( t ) 
j 

, k, j ∈ not committee 
c2 
L 

∗w 2 

( t ) 
k 

/ 
∑ 

j w 2 

( t ) 
j 

, k, j ∈ committee 
(16) 

lgorithm 1 Weight calculations of the RMQCAL process. 

Input: The L score lists S ∗(t) 
k 

from the n 1 certainty-based SQCs, n 2 
committee-based SQCs and n 3 representativeness-measure SQCs, where 

k = 1 , 2 , · · · , L ( L = n 1 + n 2 + n 3 ) , and the number of samples is selected 

from each iteration N . 

1: Normalize each score list to −1.0 to 0 or 0 to 1.0; then, S ∗(t) 
k 

can be 

obtained by sorting the scores in ascending order. 

2: Calculate two correction parameters: c 2 = n 2 , and c 1 = n 1 + n 3 . 

3: Calculate w 

(t) 
k 

from formulas (14) , (15) and (16) . 

Output: A vector w 

(t) = [ w 

(t) 
1 

, · · · , w 

(t) 
L 

] that represents the weight of each L 

SQC in the t th iteration. 

.4. The weighted aggregation of each sample rank list 

After obtaining R 

(t) 
k 

from step 1 and w 

( t ) from step 2, the fol-

owing problem is similar to a rank aggregation problem that can

e elegantly solved by using improved rank aggregation methods. 

Here, it is useful to review rank aggregation methods. Lin S

ummarized existing rank aggregation methods that had been de-

eloped up until 2010 [33] and are used to address problems re-

ated to recommendation systems. In recent years, many methods

f rank aggregation have been designed, including the following:
orda’s method, Bucklin voting [35] , the Markov chain [36] , Thur-

tone’s model, the cross-entropy Monte Carlo model [33] , the Con-

orcet method [37] and other stochastic methods [38] . Rank ag-

regation is now widely employed to address information retrieval

roblems. To our knowledge, this is the first study to apply rank

ggregation methods to the AL problem. 

However, some differences remain between common rank ag-

regation problems and our MQCAL problem, and some of the rank

ggregation methods may not properly address MQCAL problems.

herefore, before introducing these methods into our algorithm,

hey must still be selected and improved. Put simply, specific dif-

erences include the following: (1) the number of rank lists ( L ) is

ot sufficiently large to establish a statistical model; (2) the num-

er of elements in R 

(t) 
k 

is large, particularly for the first iterations

when t is small), which can result in inefficiencies; (3) traditional

ank aggregation problems seldom involve weighting; and (4) in

ost cases, R 

(t) 
k 

is not a shuffled list from one to | U 

( t ) | as the same

ankings may be involved. 

Point (1) implies that statistical model-based rank aggregation

ethods, e.g., Thurstone’s model, cannot work. With regard to

oint (2), we apply rank aggregation methods for lower comput-

ng complexity, e.g., Borda’s and Bucklin’s methods and the Markov

hain. In addition, a sample truncation method is proposed as a

eans to further reduce the number of samples involved in rank

ggregation. Regarding points (3) and (4), some improvements are

ade to existing rank aggregation methods (e.g., adding weights to

ach list). 

For the above problems, we present three feasible means of

ank aggregation of varying computing complexity and perfor-

ance that are based on enhanced versions of the Borda, Bucklin

oting and Markov chain approaches. 

.4.1. Borda’s methods 

Borda’s methods are the most popular and intuitive rank aggre-

ation methods [33] , and they are still widely used to study elec-

ions. There are two main phases of Borda methods. 

1. The first phase involves the construction of a mapping function

MAP(.) between the ranking R 

(t) 
k 

and its corresponding Borda

score B 

(t) 
k 

. When addressing practical issues, MAP(.) is typically

designed to score as 1 when ranked first, as 2 when ranked

second, and so on. In the other words, MAP(.) is expressed as

formula (17) : 

B 

( t ) 
k 

( index ) = MAP 
(
R 

( t ) 
k 

( index ) 
)

≈ R 

( t ) 
k 

( index ) , index = 1 , 2 , . . . , 
∣∣U 

( t ) 
∣∣ (17) 

here R 

(t) 
k 

( index ) is the score of indexed samples in R 

(t) 
k 

. 

For the application of such methods to our RMQCAL, due to the

rocessing that is involved in weighting, formula (17) should be

eformulated as formula (18) : 

 

( t ) 
k 

( index ) = MAP 
(
R 

( t ) 
k 

( index ) 
)

· w 

( t ) 
k 

≈ R 

( t ) 
k 

( index ) · w 

( t ) 
k 

, index = 1 , 2 , . . . , 
∣∣U 

( t ) 
∣∣ (18) 

2. The second phase involves the use of f borda (.), which we refer

to as the Borda score fusion algorithm. This algorithm is used

to obtain the overall Borda score B 

(t) 
borda 

by combining all Borda

scores in formula (19) : 

B 

( t ) 
borda 

= f borda 

(
B 

( t ) 
1 

, B 

( t ) 
2 

, . . . , B 

( t ) 
L 

)

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

min 

(
B 

( t ) 
1 

, B 

( t ) 
2 

, . . . , B 

( t ) 
L 

)
( minimum ) 

median 

(
B 

( t ) 
1 

, B 

( t ) 
2 

, . . . , B 

( t ) 
L 

)
( median ) (∏ L 

k =1 B 

( t ) 
k 

)1 /L 
( geometric mean ) ∑ L 

k =1 

(
B 

( t ) 
k 

)p 
( p − norm ) 
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where p is typically set equal to 1 (Here, the p-norm algorithm is

the arithmetic mean). 

The Borda-based rank aggregation method of our RMQCAL in-

volves the following four steps: 

Algorithm 2 Borda-based rank aggregation of the RMQCAL process. 

Input: The L rank lists R (t) 
k 

from corresponding SQC values, where k = 1, 2, …, 

L, and the number of samples is selected in each iteration N and w 

( t ) . 

1: Determine the mapping function MAP(.), the core fusion algorithm f borda (.), 

and parameter N 

2: An L × | U ( t ) | Borda score list can be established according to the above 

formula (18) , in which every row is the Borda score of one rank list, and 

every column includes the L Borda score of one sample from different SQC 

values. 

3: The overall Borda score can be obtained from formula (19) . For each column 

of the above list, R (t) 
agg is the rank list of this Borda score from small to large. 

4: N samples with the lowest overall Borda score B (t) 
borda 

can be selected as Q ( t ) . 

Output: Q ( t ) , denoting the most N valuable samples, is selected from U ( t ) in the 

t -th iteration. 

2.4.2. Bucklin voting method 

According to the method described in [35] , the earliest itera-

tion of the Bucklin voting method was also used in voting systems

for candidate selection. According to the kernel principle of the

Bucklin voting method, when one candidate has a majority, that

candidate wins. Otherwise, the second choice is added to the first

choice. Whether one candidate has a majority is re-estimated; if

so, that candidate wins. If not, the previous tasks are repeated. 

Due to the importance of weighting factors, the algorithm is

similar to the Electoral College system. Election candidates are

used as samples. The first and second choices correspond, respec-

tively, to the first and second ranked R 

(t) 
k 

values. L SQCs are no

longer L voters but are L states, and R 

(t) 
k 

can be regarded as the

number of electoral votes cast in each state. Based on a previous

publication [35] , the overall process is described as follows. 

Algorithm 3 Bucklin voting-based rank aggregation of the RMQCAL process. 

Input: L rank lists R (t) 
k 

from corresponding SQCs, where k = 1, 2, ..., L , and the 

number of samples is selected in each iteration N and w 

( t ) . 

1: Establish a 1 × | U ( t ) | sparse list SL , where each column records the electoral 

votes of each sample from L rank lists initialized to zeros. 

2: Set ch = 1 and ii = 1 and construct an empty Q ( t ) . 

3: Start searching the sample with the ii th value in the aggregate rank list; 

the positioning of this sample is saved in Q ( t ) . 

While (ii < 1 + N) 

4: For j = 1: L 

If the index th sample is the ch th of R (t) 
k 

, R (t) 
k 

( index ) = ch 

Update the list SL , SL ( ch, index ) = SL ( ch, index ) + w 

(t) 
k 

. 

End 

End 

If there is a column index ∗ of list SL whose summation is greater than 0.5 

5: Record index ∗ in Q ( t ) , ii = ii + 1 ; clear this column to zero to prevent it 

from being selected a second time. 

Else 

5: ch = ch + 1 ; insert a new line below SL . 

End 

End 

Output: Q ( t ) , which are the N samples with the highest value selected from 

Q ( t ) , of the t th iteration. 

Theoretically, the Bucklin voting method is an ideal method to

use in our RMQCAL because it makes no attempt to initially aggre-

gate a complete rank list R 

(t) 
agg for all involved samples. The samples

of each place in the rank list after aggregation are confirmed indi-

vidually and are exactly what our RMQCAL requires (only the most

N valuable samples need be selected for each iteration, where N is

always small). 
.4.3. Markov chain method 

The Markov chain method was first introduced into the PageR-

nk algorithm (a practical rank aggregation problem) by Dwork in

001. As noted in the literature [36] , the Markov chain serves as an

legant, rational and high-performance solution to rank aggrega-

ion problems. The central ideas of the conventional Markov chain

hat are used for rank aggregation typically involve two steps. Step

: Convert aggregated targets by incorporating several input rank-

ng lists into a specific transition matrix using one form of proba-

ility assignment P(.). Step 2: According to [36] , regardless of the

nitial state, the Markov chain system based on one specific tran-

ition matrix will always eventually reach a unique fixed point

t which the state distribution does not change. We define this

oint as the stationary distribution of the corresponding transi-

ion matrix, which is also the basis for ranking lists after aggre-

ation. According to the different transition matrices, the Markov

hain method can be subdivided into the following: MC1, MC2 and

C3 [33] . 

However, traditional Markov chain methods are not completely

uited to address our RMQCAL problem because the original meth-

ds do not apply weights. In addition, its computation complexity

s high, particularly when t is small. To solve these two problems,

wo changes are made to the Markov chain method in the pro-

osed RMQCAL approach, as follows. 

First, before building a transition matrix, an extra ‘sample trun-

ation’ step is added to significantly reduce computation complex-

ty levels using only some of the samples. Only the samples that

re among the top N 

∗ in each R 

(t) 
k 

at least once will join the next

hase of transition matrix establishment, and the remainder are ig-

ored. The sample truncation process is expressed as formula (20) :

 

∗( t ) 
k 

= R 

( t ) 
k 

( n ) , n ∈ 

{ 

i | 
L ∑ 

k =1 

I 
(
R 

( t ) 
k 

( i ) ≤ N 

∗) ≥ 1 , i = 1 , . . . , 
∣∣U 

( t ) 
∣∣} 

(20)

here R 

∗(t) 
k 

is a modified version of R 

(t) 
k 

after sample truncation,

 

∗ is typically set as N 

∗ = N + tu n 2 . ( tun 2 can be set equal to 5),

nd N〈 N 

∗ ≤| R 

∗(t) 
k 

| � | R 

(t) 
k 

| = | U 

(t) | . 
This improvement is applicable to our RMQCAL problem. For

ur RMQCAL, in each iteration, the samples that are used are

anked at the top of the N list after rank aggregation. Furthermore,

he higher a sample ranks in any R 

(t) 
k 

, the more likely it is to oc-

upy the top N place in the aggregated list of all R 

(t) 
k 

values. There-

ore, the rank aggregated results of each R 

(t) 
k 

and the front section

f each R 

(t) 
k 

are likely to be the same, particularly when N is not

arge and when most R 

(t) 
k 

values are relatively similar. 

Second, for each pair of samples u (t) 
i 

, u (t) 
j 

(i � = j and i,

j ∈ [ 1 , 2 , · · · , | R 

∗(t) 
k 

| ]) , the improved weighted transition proba-

ility Tran 

( t ) ( i, j ) in RMQCAL can be described as formula (21) : 

 ra n 

( t ) ( i, j ) 

= P 

(
u 

( t ) 
i 

→ u 

( t ) 
j 

)

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 | U ( t ) | · I 
(∑ L 

k =1 w 

( t ) 
k 

·
(
I 
(
R 

( t ) 
k 

( i ) > R 

( t ) 
k 

( j ) 
))

> 0 

)
: MC1 

1 | U ( t ) | · I 
(∑ L 

k =1 w 

( t ) 
k 

·
(
I 
(
R 

( t ) 
k 

( i ) > R 

( t ) 
k 

( j ) 
))

> 

1 
2 

)
: MC2 

1 | U ( t ) | ·
∑ L 

k =1 w 

( t ) 
k 

·
(
I 
(
R 

( t ) 
k 

( i ) > R 

( t ) 
k 

( j ) 
))

: MC3 

(21)

After all P( u (t) 
i 

→ u (t) 
j 

) values have been calculated,

( u (t) 
i 

→ u (t) 
i 

) can be obtained from formula (22) : 

 ra n 

( t ) ( i, i ) = 

(
u 

( t ) 
i 

→ u 

( t ) 
i 

)
= 1 −

∑ 

i � = j 
T ra n 

( t ) ( i, j ) (22)
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Algorithm 5 Our RMQCAL process. 

Input: The L SQC, namely, F (t) 
k 

( k = 1: L ) , the unlabeled dataset U (0) , and the 

number of samples selected in each iteration N . 

Repeat 

If the number of iterations t = 0 

Step 0: randomly use one kind of experimental design-based SQC to 

select the first batch of unlabeled samples for labeling as Q (0) , 

A (0) = Q (0) and U (1) = U (0) \ Q (0) 

Else 

Step 1: Obtain each pair of R (t) 
k 

and S (t) 
k 

using F (t) 
k 

in U ( t ) . 

Step 2: Using Algorithm 1 for S (t) 
k 

, obtain the weights of each F (t) 
k 

in 

the t th iteration S (t) 
k 

→ S ∗(t) 
k 

→ w 

(t) 
k 

Step 3: Choose one rank aggregation method ( Algorithm 2, Algorithm 

3 , or Algorithm 4 ) to obtain the weighted aggregated rank list and select the 

sample with the top N value as Q ( t ) . Then, N, R (t) 
k 

, w 

(t) 
k 

→ Q (t) 

Step 4: Request a label of Q ( t ) from the Oracle. Then, 

A (t) = A ( t−1 ) ∪ Q (t) and U ( t+1 ) = U (t) \ Q (t) . 

End 

Until: a stopping criterion is applied or | U (t) | = 0 . 

3
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Table 1 

The experimental datasets used. 

Pos: Neg Feature number Sample size 

Vehicle ∗ 218:217 18 438 

Isolet ∗ 30 0:30 0 617 600 

Wdbc ∗ 212:357 30 569 

Titato ∗ 626:332 9 958 

Austra ∗ 307:383 14 690 

LetterEF ∗ 768:775 16 1543 

LetterIJ ∗ 755:747 16 1502 

LetterMN 

∗ 792:783 16 1575 

LetterDP ∗ 805:803 16 1608 

LetterUV ∗ 813:764 16 1577 

Mushroom + 4208:3916 22 8124 

EEG + 6723:8257 14 14,980 

Mocap + 16,265:15,733 15 31,998 

Epilepsy + 230 0:230 0 178 4600 
Because L is typically not large in our RMQCAL problem, the

bove Tran 

( t ) is often a large sparse matrix with several 0 ele-

ents. To ensure ergodic results for the transition matrix, a tun-

ng parameter t is introduced and treated as follows in formula

23) : 

 ra n 

∗( t ) ( i, j ) = T ra n 

( t ) ( i, j ) × ( 1 − tu n 1 ) + 

tu n 1 

| U 

( t ) | (23) 

here tun 1 is typically set to range from 0.01 to 0.15, as specified

y the above reference. 

Finally, from the perspective of matrix theory, the stationary

istribution of one transition matrix is its principal left eigenvector,

hich can be computed from a regular power-iteration algorithm

fter transposing the above matrix. The improved MC method used

or the RMQCAL problem is as follows: 

lgorithm 4 Markov chain-based rank aggregation for the RMQCAL process. 

Input: L rank lists R (t) 
k 

and corresponding w 

( t ) values from the corresponding 

SQCs, where k = 1, 2, ..., L , the number of samples selected in each iteration 

is designated N , the tuning parameter is designated tun 1 , and the number of 

other samples of interest is designated tun 2 . 

1: For each R (t) 
k 

except for the committee-based one, use formula (20) and 

tun 2 to truncate, and reconstruct the term as R (t) 
k 

. 

2: Preferences among pairs of samples for each R (t) 
k 

are calculated through one 

mode of probability assignment P(.) using formulas (21) and (22) . 

3: A transition matrix is established and adapted using formula (23) and the 

tuning parameter tun 1 . 

4: The obtained transition matrix must be transposed and then used in a 

regular power iteration algorithm to calculate its left eigenvector (the 

stationary distribution). 

5: The value of each element in a stationary distribution can be regarded as a 

Markov chain score of its corresponding samples. The R (t) 
agg is the rank list of 

the Markov chain score from large to small, and the top N samples with 

high Markov chain scores are collected as Q ( t ) values to query for labels. 

Output: Q ( t ) , which denotes the most N valuable samples, is selected from U ( t ) 

in the t th iteration. 

.4.4. Comparison of methods 

Note that, regarding levels of computational complexity, in the

bove weighted rank aggregation methods, the algorithm for solv-

ng the top-k problem in an unsorted array with n elements is

nified, and the computational complexity of these methods is

qual to O( n ). Then, on average, the computational complexity of

orda’s and Bucklin voting are all O(| U 

( t ) | × L ). Because we employ

sample truncation’, the computational complexity of the Markov

hain can be diminished to O( N 

∗3 ) from O(| U 

( t ) | 3 ). Because the

alue of N 

∗ is far lower than that of | U 

( t ) |, the computational com-

lexity of our improved Markov Chain method for MQCAL will be

cceptable. 

Borda’s method is inferior to the others because in certain

pecial cases, particularly when L is small or when one rank

ist R 

(t) 
k 

is committee-based, using Borda’s method can cause

ost unlabeled samples to have the same overall Borda score. In

urn, the most valuable samples with the lowest overall Borda

cores often cannot be selected. This situation does not occur

hen the Markov chain and Bucklin voting methods are ap-

lied. Considering the corresponding performance, relevant doc-

ments indicate that the Markov chain works better than the

orda and Bucklin voting methods when applied to traditional

ank aggregation problems. For the RMQCAL problem, the ratio-

ality and validity of the above ranking aggregation method still

eed to be confirmed by multiple experiments, as described in

ection 4 . 

Above all, the improved process of our RMQCAL can be defined

s follows: 
. Experiments 

.1. Dataset description 

To evaluate the overall performance of our RMQCAL, compar-

tive experiments are conducted on 14 different binary classifica-

ion problems from the UCI Repository downloaded from the pub-

ic website http://archive.ics.uci.edu/ml/ . Each problem corresponds

o one dataset, as shown in Table 1 . Vehicle ∗, Isolet ∗, Titato ∗, Austra ∗,

etterEF ∗, LetterIJ ∗, LetterMN 

∗, LetterDP ∗, LetterUV 

∗ and Wdbc ∗ are 10

ommon datasets, which are consistent with the datasets provided

n [8] . Moreover, the remaining four datasets, Mushroom 

+ , EEG 

+ ,
ocap + , and Epilepsy + , which contain more than 40 0 0 samples,

re used to validate the performance of the proposed method on a

arge-scale dataset. Notably, the dataset Wdbc ∗ is also employed to

earch for the best combination of rank aggregation methods and

QCs in RMQCAL. 

Before an experiment is conducted, each dataset is normalized

nd randomly divided into two parts of equal size. One part is used

s a test set, and the other is used as the unlabeled sample for AL

ethods. To ensure the reliability of the experimental results, most

f the experiments listed below are run 10 times, and the average

or each period is shown as the final performance result. 

.2. Experimental setting 

All operations are executed using MATLAB R2014a software

Mathworks, Inc., Natick, MA, USA) installed on a PC with an In-

el Core i3-2100 CPU (3.10 GHz) and 3 GB memory. Because the

http://archive.ics.uci.edu/ml/
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main purpose of AL is to effectively and efficiently establish a good

learning model regardless of whether it improves its performance,

this paper only applies to an SVM classifier with an RBF kernel—

the same as was used in [8] —as the baseline against which com-

parisons to all approaches can be drawn. The SVM classifier is

supported by LibSVM at http://www.csie.ntu.edu.tw/ ∼cjlin/libsvm/ .

The source code of our RMQCAL and the control method have also

been uploaded to GitHub. The interested reader can download the

code from https://github.com/wangtaoz/RMQCAL.git . 

3.3. Performance metrics 

For Experiments A and B , two metrics (namely, accuracy and

F1-measure) are used to evaluate the performance of approaches

relative to those described in [8] . The F1-measure is a common

metric described in formula (24) : 

F 1 = 

2 × P recision × Recall 

P recision + Recall 
. (24)

For Experiment C , in addition to accuracy, the area under the

ROC curve (AUC) is added as an additional evaluation metric. In ad-

dition, paired t-tests conducted at the 95 percent significance level

are introduced to reflect the difference between the two methods.

For Experiment A , Kendal’s tau [39] and Spearman’s footrule dis-

tance [40] are also introduced to evaluate rank aggregation effects

as described in formula (25) : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dis t Spearman = 

∑ L 
k =1 Spear 

(
R 

( t ) 
agg , R 

( t ) 
k 

)
= 

∑ L 
k =1 

∑ | U ( t ) | 
i =1 

∣∣R 

( t ) 
agg ( i ) − R 

( t ) 
k 

( i ) 
∣∣

d is t Kendal = 

∑ L 
k =1 Kend al 

(
R 

( t ) 
agg , R 

( t ) 
k 

)
= 

∑ L 
k =1 

∑ | U ( t ) | 
i, j=1 

I 
((

R 

( t ) 
agg ( i ) − R 

( t ) 
agg ( j ) 

)(
R 

( t ) 
k 

( i ) − R 

( t ) 
k 

( j ) 
)

< 0 

)
(25)

where i � = j ∈ [ 1 , 2 , . . . , | U 

t | ] , and R 

(t) 
agg is the rank list after aggre-

gation. 

As to the Experiment D , the CPU time is used to measure the

efficiency of each contrast algorithms and the proposed RMQCAL. 

3.4. Experimental goals 

The whole experiment section has two goals: determining

which implementation of the method is used in each step of RMQ-

CAL and verifying the performance of RMQCAL. 
Fig. 6. Performance of RMQCAL realized using the Bo
For the first goal, Experiment A is designed to choose the

est rank aggregation method for RMQCAL from the involved

andidate methods. In a related aspect, Experiment B needs to

nd possible RMQCAL rules, including the results within various

ombinations of involved SQCs and the results for various num-

ers of involved SQCs. Then, a credible and complete RMQCAL

rocess can be determined and will be used in the following

xperiments. 

The goal of Experiment C is to confirm the effectiveness and

uperiority of RMQCAL through a series of comparative experi-

ents on several different kinds of control methods. In addition,

xperiment D is used to analyze and evaluate the algorithm effi-

iency of the proposed RMQCAL. 

.5. Experimental process 

xperiment A. The selection of the most appropriate rank aggre-

ation methods for RMQCAL 

escription of Experiment A: 

To preliminarily narrow the selection of rank aggregation meth-

ds, in Experiment A , a toy example is presented as an in-

ut list with seven ranking lists to first illustrate the perfor-

ance differences of the candidate rank aggregation methods,

hich are confirmed as available in the above article including

he Borda methods within different Borda score expressions (i.e.,

edian, p-norm, minimum and geometric mean, as described in

ormula (19) ), Bucklin voting, and Markov chain methods within

everal weighted transition probability expressions (i.e., MC1,

C2, MC3, as described in formula (21) ). Moreover, in this and

he following experiments, the tuning parameter of the Markov

hain method and the Borda parameter are set as 0.05 and 1,

espectively. 

The candidate rank aggregation methods with the better per-

ormance on the above toy example will be used as RMQCAL in-

egration criteria strategies. Then, a complete RMQCAL process is

mplemented for dataset Wdbc ∗. In this phase, the controlled ex-

eriment is designed to further evaluate the effects of various

ank aggregation methods on our MQCAL process. The SQCs are

xed, and their accuracy levels and F1-measures (X-axis) with dif-

erent labeling costs ( Y -axis), which are indicated as the percent-

ge of the sample designated for label selection, are compared in

ig. 6 . 

esult of Experiment A: 
rda, Bucklin voting and Markov chain methods. 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://github.com/wangtaoz/RMQCAL.git
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Table 2 

Comparison of ranking aggregation methods used in a toy e

Sample Input lists B

L1 L2 L3 L4 L5 L6 L7 M

Sample1 8 6 3 3 7 4 1 1

Sample2 10 8 2 2 9 5 1 6

Sample3 2 2 1 1 5 3 1 2

Sample4 9 1 4 4 3 2 1 3

Sample5 5 7 8 10 10 7 5 9

Sample6 7 10 8 8 1 1 5 4

Sample7 6 5 8 9 8 10 5 1

Sample8 1 9 6 7 2 8 5 5

Sample9 4 4 5 6 6 9 5 8

Sample10 3 3 7 5 4 6 5 7

Kendall’s tau distance 9

Spearman’s footrule distance 1

nalysis of Experiment A: 

From the results in Table 2 , it can be observed that the MC2

ethod, the Bucklin method and the Borda method with the

-norm ( p equal to 1) perform better with Kendall’s tau dis-

ance and Spearman’s distance values of (79,154), (85,152) and

81,156) on above toy example, respectively. Additionally, only

hese three methods will be introduced in the next step as the

hree rank aggregation methods used for integration. As the re-

ults show in Fig. 6 , we find that the enhanced effects of our

MQCAL method based on the Markov chain approach with an

C2 weighted transition probability expression are the most eas-

ly detectable; the Borda approach ranks second, and the Buck-

in voting method is not satisfactory. This final result is likely

ttributable to a property of the Bucklin voting method, which

ften positions samples with the highest median ratings at the

op of a rank list after aggregation, an unsuitable property

or AL problems. Thus, subsequent experiments use the Markov
Fig. 7. Performance of RMQCAL wi
e. 

method Markov chain 

Med P-norm Geo Buc MC1 MC2 MC3 

2 3 3 4 8 3 3 

4 5 4 7 7 4 7 

1 1 1 1 1 1 1 

3 2 2 3 3 2 2 

7 9 9 9 9 8 10 

8 7 5 5 5 9 5 

10 10 10 10 10 10 9 

9 6 6 4 4 6 5 

6 8 8 6 6 7 8 

5 4 7 2 2 5 4 

83 81 84 85 99 79 84 

156 156 166 152 172 154 158 

hain approach with an MC2 weighted transition probability

xpression. 

xperiment B. RMQCAL experiments with various SQC combina-

ions 

escription of Experiment B: 

After determining the best ranking aggregation method for the

roposed RMQCAL method in Experiment A , Experiment B involves

 series of comparative experiments that are used to reflect the

erformance of RMQCAL in dataset Wdbc ∗ when applying various

ombinations of SQCs. The candidate SQCs used include the follow-

ng: Diversity (DI), Margin in RBF-SVM (MR), Margin in Bayes (MB),

BC and TED. The performance curves of each case, including their

ccuracies and F1-measures (X-axis) with different labeling costs

Y-axis), are presented in Figs. 7 –15 . 

esult of Experiment B: 
th two certainty-based SQCs. 
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Fig. 8. Performance of RMQCAL with certainty-based and connection-based SQCs. 

Fig. 9. Performance of RMQCAL with SQCs based on certainty and experimental design. 

Fig. 10. Performance of RMQCAL with certainty-based and committee-based SQCs. 
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Fig. 11. Performance of RMQCAL with SQCs based on certainty, committee, connection. 

Fig. 12. Performance of RMQCAL with SQCs based on certainty, committee, experimental design. 

Fig. 13. Performance of RMQCAL with SQCs based on certainty, connection and experimental design. 
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Fig. 14. Performance of RMQCAL with SQCs based on committee, connection, experimental design. 

Fig. 15. Performance of RMQCAL with several SQCs. 

 

 

i  

m  

p  
Analysis of Experiment B: 

Experiment B helps explain several of the problems. First, the

proposed MQCAL does have high scalability, which would enable
Fig. 16. The weight variations in TED and MB. 
t to offer a variety of criteria combinations with less algorithm

odification. Second, the RMQCAL with the combination of multi-

le SQCs usually (not always) performs better than its components,
Fig. 17. The weight variations in DI and MB. 
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Fig. 18. The weight variations in MR and MB. 

Fig. 19. The weight variations in QBC and MB. 

i  

b  

i  

d  

e

 

i  

t  

a  

t  

w  

c  

t  

8  

a  

b  

b  

A  

C  

i  

i  

a  

s  

c  

W  

l  

o  

i  

F  

c  

S  

b

 

S  

p  

i  

t  

c  

m

 

b  

t  

t  

a  

b  

e  

f  

r  

i

 

w  

i  

a  

a

E  

o

D

 

o  

a  

D  

S  

[  

[

 

s  

w  

p  

l  

C  

o  

(  

m  

I  

m  

i  

a  

R

 

a  

m  

v  

t  

t

 

a  

e  
.e., an AL with a single criterion. However, an inappropriate com-

ination may lead to no definable benefit, as shown, for example,

n Figs. 7, 10 and 14 . This article considers that the failure of the

ynamic weighting process is the primary explanation for these

xceptions. 

To prove above view, we specifically record weight changes

n each involved single criterion under the experimental condi-

ions used for Figs. 7–10 as well as Figs. 16 –19 , where coordinate-

xis X indicates the labeling cost and coordinate-axis Y indicates

he value of self-adaptive weights. Under ideal conditions, the

eight changes of each single criterion involved in the AL pro-

ess should be dynamic and should satisfactorily reflect the con-

ribution of each criterion. In the successful cases shown in Figs.

 and 9 , both of their weight changes in Figs. 16 and 17 show

 gradual decline in weight for the representativeness measure-

ased SQC, whereas the weight of the informativeness measure-

ased SQC rises continuously. Combined with ‘the timeliness of

L’ described above, such weight changes are just what we need.

onversely, regarding the ineffective cases, the involved two SQCs

n Fig. 7 belong to the same category (Certainty), and one (MR)

s always better than the others (MB), causing our RMQCAL to

ssign a higher weight to the MR from beginning to end (as
hown in Fig. 18 ). Additionally, the combination that involved the

ommittee-based SQC in Fig. 10 does not seem to perform well.

e attribute this performance to our designed weighting calcu-

ation step, in which the involved SQC will be equally weighted

nly if there are only two SQCs, and one of them is QBC (as shown

n Fig. 19 ). Similarly, it is not surprising that the case shown in

ig. 14 does not perform well not only because it involves the

ommittee-based SQC but also because the other two involved

QCs belong to same type of AL (i.e., representativeness measure

ased). 

Moreover, Fig. 15 indicates that with the increasing number of

QCs from more AL methods, the performance of RMQCAL im-

roves and becomes more stable, although the room for continued

mprovement diminishes. On the other hand, as shown in Fig. 15 ,

he potential predominance of RMQCAL in practical applications

an also be partially supported if we regard these involved AL

ethods as the candidate methods. 

In sum, several rules exist by which SQCs are selected for com-

ination. (1) The SQCs do not have to be numerous. In general,

hree SQCs are sufficient. (2) The involved SQCs preferably belong

o different types of AL. At least one of them is certainty based,

nd another one is representativeness measure based. Committee-

ased SQCs should be used in conjunction with two or more differ-

nt types of SQCs. (3) Certainty-based SQCs can promote the per-

ormance of our RMQCAL in the middle stages of the process. Rep-

esentativeness measure-based SQCs can enhance AL performance

n the early stages. QBC can smooth the performance curve. 

According to the above rules and the results shown in Fig. 15 ,

e recommend employing Diversity, Margin and QBC as the three

nvolved SQCs in the proposed RMQCAL. These will also be used in

ll tests shown below. In our view, this combination is both typical

nd adequate. 

xperiment C. Comparisons between RMQCAL and other AL meth-

ds 

escription of Experiment C: 

Experiment C is the focus of our experiments, which compare

ur research results with various kinds of existing AL methods

s the controlled methods, which include RANDOM, MARGIN [41] ,

IVERSITY [11] , QBC [19] , CSAL [21] (based on criteria selection),

MQCAL [23] (serial-form), PMQCAL [23] (parallel-form), MCDMAL

9] (based on multicriteria decision-making), DUAL [7] and QUIRE

8] . 

In these methods, MARGIN, Diversity and QBC are three clas-

ic single criterion-based AL methods ( dotted line in the diagram ),

hose internal SQCs are also the individual components of the

roposed RMQCAL. RMQCAL shall not be determined effective, un-

ess RMQCAL achieve a higher performance than them; CSAL, SMQ-

AL, PMQCAL and MCDMAL are four well-developed approaches of

ther forms of MQCAL with different integration criteria strategies

 solid line in the diagram ). Similarly, the performance of RMQCAL

ust exceed that of these four methods to be considered superior.

n addition, DUAL and QUIRE are two existing state-of-the-art AL

ethods with their own specially designed SQCs and accessional

ntegration criteria strategies ( dashed line in the diagram ), which

re used to further illustrate the pros and cons of the proposed

MQCAL. 

The SQCs involved in our RMQCAL method include DIVERSITY

nd MARGIN in the RBF-SVM and QBC, which may be not opti-

al but nevertheless represent the most typical combination in-

olving three kinds of single-criterion AL methods. With respect to

he integration strategy, SQCs employ an improved rank aggrega-

ion method based on a Markov chain. 

To ensure the validity of the comparative experiments and

void the effects of other factors, we reproduce an experimental

nvironment that is exactly the same as that described in another
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paper [8] . The same 10 small-scale datasets (i.e., Wdbc ∗, Vehicle ∗,

Isolet ∗, Titato ∗, Austra ∗, LetterDP ∗, LetterEF ∗, LetterIJ ∗, LetterMN 

∗ and

LetterUV 

∗) are used with the same experimental parameters pro-

vided in the corresponding literature to determine whether the

proposed RMQCAL is competitive with existing MQCAL methods.

Moreover, four additional large-scale datasets (i.e., Mushroom + ,

EEG + , Mocap + , Epilepsy + ) are also introduced to validate the per-

formance of the proposed method on big data issues. 

For each dataset, a corresponding experiment is repeated 10

times, and performance curves measuring accuracy ( X -axis) against

labeling costs ( Y -axis) for the methods are shown in Fig. 20 . In ad-

dition to the average AUC (MEAN) of each method, as calculated in

5 different stages of the AL process (when labeled samples account

for 5%, 10%, 20%, 30% and 40% of the total dataset for the small-
Table 3 

Comparison of the AUC values of the 14 datasets (1). 

The labeled samples 5% 10% 

Database Algorithms Mean ± SD Mean ± SD 

RANDOM 0.868 ± 0.027 0.894 ± 0.022 

MARGIN 0.751 ± 0.137 0.838 ± 0.119 

DIVERSITY 0.857 ± 0.038 0.870 ± 0.036 

QBC 0.733 ± 0.073 0.796 ± 0.024 

CSAL 0.820 ± 0.055 0.841 ± 0.055 

Austra SMCDMAL 0.822 ± 0.061 0.850 ± 0.014 

PMCQAL 0.845 ± 0.061 0.834 ± 0.042 

MCDMAL 0.843 ± 0.045 0.838 ± 0.035 

DUAL 0.866 ± 0.037 0.878 ± 0.036 

QUIRE 0.887 ± 0.014 0.901 ± 0.010 

RMQCAL 0.916 ± 0.010 0.922 ± 0.009 

RANDOM 0.995 ± 0.006 0.998 ± 0.002 

MARGIN 0.965 ± 0.052 0.999 ± 0.001 

DIVERSITY 0.978 ± 0.056 0.931 ± 0.093 

QBC 0.950 ± 0.042 0.931 ± 0.067 

Isolet CSAL 0.948 ± 0.047 0.934 ± 0.039 

SMCDMAL 1.0 0 0 ± 0.001 1.0 0 0 ± 0.001 

PMCQAL 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

MCDMAL 0.998 ± 0.003 0.990 ± 0.020 

DUAL 0.993 ± 0.008 0.999 ± 0.001 

QUIRE 0.997 ± 0.002 0.999 ± 0.001 

RMQCAL 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.001 

Table 4 

Comparison of the AUC values of the 14 datasets (2). 

The labeled samples 5% 10% 

Database Algorithms Mean ± SD Mean ± SD 

RANDOM 0.762 ± 0.033 0.861 ± 0.031 

MARGIN 0.645 ± 0.096 0.753 ± 0.078 

DIVERSITY 0.723 ± 0.031 0.759 ± 0.034 

QBC 0.720 ± 0.035 0.779 ± 0.019 

Titato CSAL 0.645 ± 0.032 0.676 ± 0.045 

SMCDMAL 0.658 ± 0.044 0.711 ± 0.041 

PMCQAL 0.644 ± 0.031 0.692 ± 0.039 

MCDMAL 0.723 ± 0.029 0.798 ± 0.027 

DUAL 0.708 ± 0.069 0.782 ± 0.064 

QUIRE 0.736 ± 0.037 0.861 ± 0.025 

RMQCAL 0.729 ± 0.073 0.813 ± 0.051 

RANDOM 0.818 ± 0.064 0.864 ± 0.039 

MARGIN 0.693 ± 0.078 0.828 ± 0.077 

DIVERSITY 0.807 ± 0.095 0.843 ± 0.110 

QBC 0.737 ± 0.131 0.784 ± 0.099 

Vehicle CSAL 0.815 ± 0.049 0.852 ± 0.056 

SMCDMAL 0.835 ± 0.075 0.892 ± 0.060 

PMCQAL 0.834 ± 0.044 0.884 ± 0.051 

MCDMAL 0.884 ± 0.039 0.903 ± 0.040 

DUAL 0.680 ± 0.074 0.706 ± 0.114 

QUIRE 0.750 ± 0.137 0.912 ± 0.024 

RMQCAL 0.806 ± 0.078 0.906 ± 0.053 

RANDOM 0.984 ± 0.006 0.986 ± 0.005 

MARGIN 0.967 ± 0.038 0.990 ± 0.002 
cale dataset task, and the number of labeled samples is 5, 65,

25, 185 and 245 for the large-scale dataset task), we also record

heir standard deviations (SDs) in Tables 3 –6 . The best result and

ts performance are recorded in bold based on paired t-tests con-

ucted at the 95 percent significance level. A more detailed com-

arison (Win/Tie/Loss Counts) between RMQCAL and another MQ-

AL method is shown in Table 7 . It is worth mentioning that par-

ial contrast methods are invalid on large-scale dataset tasks be-

ause of their high algorithm complexity. This situation is recorded

s ‘Null’ in Table 6 . Similarly, in Table 7 , the data outside of the

arentheses represent the Win counts if we account for the above

nvalid cases and inside of the parentheses if we do not. 

esult of Experiment C: 
20% 30% 40% 

Mean ± SD Mean ± SD Mean ± SD 

0.897 ± 0.023 0.901 ± 0.022 0.909 ± 0.015 

0.885 ± 0.043 0.909 ± 0.010 0.911 ± 0.012 

0.892 ± 0.021 0.895 ± 0.019 0.897 ± 0.016 

0.820 ± 0.018 0.847 ± 0.028 0.865 ± 0.022 

0.859 ± 0.039 0.864 ± 0.022 0.854 ± 0.020 

0.861 ± 0.023 0.878 ± 0.016 0.885 ± 0.013 

0.858 ± 0.025 0.879 ± 0.023 0.885 ± 0.022 

0.840 ± 0.027 0.856 ± 0.022 0.864 ± 0.018 

0.875 ± 0.018 0.876 ± 0.016 0.879 ± 0.013 

0.906 ± 0.016 0.912 ± 0.009 0.914 ± 0.009 

0.926 ± 0.007 0.926 ± 0.005 0.929 ± 0.007 

0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

0.983 ± 0.021 0.993 ± 0.003 0.972 ± 0.037 

0.854 ± 0.052 0.848 ± 0.062 0.838 ± 0.075 

0.894 ± 0.051 0.938 ± 0.074 0.960 ± 0.107 

1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

0.939 ± 0.085 0.924 ± 0.099 0.866 ± 0.174 

0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.001 

0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.001 

1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.001 1.0 0 0 ± 0.0 0 0 

20% 30% 40% 

Mean ± SD Mean ± SD Mean ± SD 

0.954 ± 0.023 0.979 ± 0.011 0.991 ± 0.007 

0.946 ± 0.043 0.998 ± 0.001 1.0 0 0 ± 0.0 0 0 

0.849 ± 0.015 0.881 ± 0.014 0.901 ± 0.011 

0.829 ± 0.015 0.834 ± 0.018 0.857 ± 0.015 

0.760 ± 0.031 0.836 ± 0.035 0.862 ± 0.022 

0.777 ± 0.030 0.822 ± 0.019 0.843 ± 0.014 

0.770 ± 0.042 0.798 ± 0.037 0.839 ± 0.027 

0.826 ± 0.010 0.848 ± 0.016 0.871 ± 0.023 

0.900 ± 0.027 0.981 ± 0.012 0.995 ± 0.006 

0.991 ± 0.004 0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 

0.861 ± 0.059 0.932 ± 0.024 0.963 ± 0.019 

0.925 ± 0.032 0.949 ± 0.026 0.968 ± 0.016 

0.883 ± 0.105 0.981 ± 0.014 0.993 ± 0.005 

0.910 ± 0.091 0.952 ± 0.025 0.956 ± 0.025 

0.924 ± 0.054 0.962 ± 0.025 0.976 ± 0.013 

0.929 ± 0.025 0.947 ± 0.020 0.959 ± 0.022 

0.919 ± 0.048 0.949 ± 0.041 0.975 ± 0.019 

0.926 ± 0.042 0.946 ± 0.038 0.969 ± 0.019 

0.924 ± 0.026 0.959 ± 0.017 0.973 ± 0.011 

0.817 ± 0.061 0.875 ± 0.035 0.908 ± 0.035 

0.956 ± 0.025 0.985 ± 0.007 0.989 ± 0.006 

0.959 ± 0.015 0.986 ± 0.015 0.996 ± 0.006 

0.990 ± 0.004 0.991 ± 0.004 0.991 ± 0.004 

0.993 ± 0.003 0.993 ± 0.003 0.993 ± 0.003 

( continued on next page ) 
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Table 4 ( continued ) 

The labeled samples 5% 10% 20% 30% 40% 

Database Algorithms Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

DIVERSITY 0.946 ± 0.036 0.964 ± 0.012 0.978 ± 0.008 0.981 ± 0.008 0.983 ± 0.008 

QBC 0.970 ± 0.023 0.974 ± 0.013 0.985 ± 0.007 0.985 ± 0.008 0.986 ± 0.008 

Wdbc CSAL 0.967 ± 0.016 0.972 ± 0.013 0.974 ± 0.011 0.983 ± 0.006 0.986 ± 0.005 

SMCDMAL 0.954 ± 0.030 0.968 ± 0.015 0.982 ± 0.005 0.984 ± 0.007 0.985 ± 0.004 

PMCQAL 0.923 ± 0.063 0.954 ± 0.027 0.967 ± 0.012 0.984 ± 0.006 0.985 ± 0.006 

MCDMAL 0.934 ± 0.065 0.960 ± 0.032 0.981 ± 0.005 0.982 ± 0.006 0.983 ± 0.007 

DUAL 0.955 ± 0.025 0.964 ± 0.016 0.972 ± 0.015 0.988 ± 0.009 0.992 ± 0.003 

QUIRE 0.985 ± 0.006 0.990 ± 0.004 0.993 ± 0.003 0.993 ± 0.003 0.993 ± 0.003 

RMQCAL 0.992 ± 0.006 0.995 ± 0.005 0.997 ± 0.002 0.998 ± 0.002 0.998 ± 0.002 

RANDOM 0.990 ± 0.004 0.995 ± 0.002 0.997 ± 0.002 0.998 ± 0.001 0.998 ± 0.001 

MARGIN 0.994 ± 0.005 0.999 ± 0.001 0.999 ± 0.0 0 0 0.999 ± 0.001 0.999 ± 0.001 

DIVERSITY 0.984 ± 0.007 0.990 ± 0.004 0.997 ± 0.002 0.999 ± 0.0 0 0 0.999 ± 0.0 0 0 

QBC 0.986 ± 0.010 0.995 ± 0.003 0.989 ± 0.006 0.986 ± 0.009 0.989 ± 0.006 

LetterDP CSAL 0.987 ± 0.008 0.996 ± 0.004 0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

SMCDMAL 0.992 ± 0.005 0.998 ± 0.003 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

PMCQAL 0.989 ± 0.007 0.988 ± 0.019 1.0 0 0 ± 0.001 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

MCDMAL 0.994 ± 0.003 0.997 ± 0.003 0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

DUAL 0.978 ± 0.005 0.986 ± 0.001 0.988 ± 0.004 0.990 ± 0.004 0.996 ± 0.001 

QUIRE 0.998 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 

RMQCAL 0.997 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 0.999 ± 0.0 0 0 

Table 5 

Comparison of the AUC values of the 14 datasets (3). 

The labeled samples 5% 10% 20% 30% 40% 

Database Algorithms Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

RANDOM 0.977 ± 0.020 0.988 ± 0.009 0.994 ± 0.002 0.997 ± 0.002 0.998 ± 0.001 

MARGIN 0.987 ± 0.008 0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

DIVERSITY 0.957 ± 0.014 0.977 ± 0.008 0.985 ± 0.008 0.992 ± 0.005 0.997 ± 0.003 

QBC 0.978 ± 0.011 0.979 ± 0.007 0.995 ± 0.002 0.994 ± 0.003 0.995 ± 0.002 

LetterEF CSAL 0.981 ± 0.008 0.994 ± 0.003 0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

SMCDMAL 0.964 ± 0.012 0.983 ± 0.009 0.995 ± 0.006 0.999 ± 0.001 0.999 ± 0.001 

PMCQAL 0.970 ± 0.017 0.984 ± 0.008 0.993 ± 0.006 0.999 ± 0.001 0.999 ± 0.001 

MCDMAL 0.981 ± 0.013 0.995 ± 0.004 0.998 ± 0.001 0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 

DUAL 0.976 ± 0.011 0.993 ± 0.003 0.996 ± 0.002 0.996 ± 0.002 0.996 ± 0.002 

QUIRE 0.988 ± 0.009 0.999 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

RMQCAL 0.982 ± 0.007 0.988 ± 0.004 0.999 ± 0.001 0.999 ± 0.0 0 0 0.999 ± 0.0 0 0 

RANDOM 0.943 ± 0.025 0.966 ± 0.017 0.980 ± 0.004 0.983 ± 0.005 0.985 ± 0.005 

MARGIN 0.882 ± 0.096 0.960 ± 0.027 0.986 ± 0.005 0.989 ± 0.006 0.991 ± 0.004 

DIVERSITY 0.894 ± 0.031 0.929 ± 0.025 0.959 ± 0.014 0.973 ± 0.008 0.980 ± 0.007 

QBC 0.914 ± 0.022 0.951 ± 0.012 0.968 ± 0.012 0.973 ± 0.012 0.977 ± 0.008 

LetterIJ CSAL 0.921 ± 0.022 0.958 ± 0.008 0.978 ± 0.007 0.986 ± 0.005 0.991 ± 0.003 

SMCDMAL 0.929 ± 0.021 0.955 ± 0.013 0.977 ± 0.009 0.982 ± 0.007 0.985 ± 0.006 

PMCQAL 0.880 ± 0.050 0.925 ± 0.050 0.964 ± 0.014 0.983 ± 0.008 0.988 ± 0.005 

MCDMAL 0.954 ± 0.012 0.973 ± 0.008 0.982 ± 0.007 0.987 ± 0.005 0.989 ± 0.004 

DUAL 0.819 ± 0.120 0.897 ± 0.058 0.934 ± 0.030 0.954 ± 0.017 0.959 ± 0.014 

QUIRE 0.951 ± 0.023 0.963 ± 0.013 0.976 ± 0.011 0.989 ± 0.010 0.991 ± 0.004 

RMQCAL 0.955 ± 0.011 0.965 ± 0.023 0.977 ± 0.017 0.988 ± 0.003 0.989 ± 0.003 

RANDOM 0.977 ± 0.010 0.992 ± 0.002 0.994 ± 0.003 0.996 ± 0.002 0.997 ± 0.001 

MARGIN 0.964 ± 0.040 0.991 ± 0.014 0.999 ± 0.0 0 0 0.999 ± 0.0 0 0 0.999 ± 0.0 0 0 

DIVERSITY 0.834 ± 0.059 0.904 ± 0.047 0.978 ± 0.011 0.994 ± 0.004 0.998 ± 0.001 

QBC 0.978 ± 0.013 0.977 ± 0.016 0.989 ± 0.004 0.992 ± 0.003 0.995 ± 0.002 

LetterMN CSAL 0.934 ± 0.039 0.979 ± 0.006 0.990 ± 0.004 0.994 ± 0.005 0.997 ± 0.002 

SMCDMAL 0.942 ± 0.027 0.989 ± 0.005 0.998 ± 0.003 1.0 0 0 ± 0.001 1.0 0 0 ± 0.001 

PMCQAL 0.872 ± 0.035 0.953 ± 0.024 0.988 ± 0.009 0.998 ± 0.001 0.999 ± 0.0 0 0 

MCDMAL 0.935 ± 0.022 0.960 ± 0.023 0.972 ± 0.013 0.991 ± 0.004 0.995 ± 0.001 

DUAL 0.950 ± 0.025 0.972 ± 0.011 0.974 ± 0.007 0.980 ± 0.008 0.983 ± 0.007 

QUIRE 0.986 ± 0.007 0.996 ± 0.003 0.998 ± 0.001 0.999 ± 0.0 0 0 0.999 ± 0.0 0 0 

RMQCAL 0.973 ± 0.010 0.990 ± 0.008 0.997 ± 0.001 0.998 ± 0.001 0.998 ± 0.001 

RANDOM 0.992 ± 0.005 0.996 ± 0.004 0.998 ± 0.001 0.999 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

MARGIN 0.998 ± 0.002 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

DIVERSITY 0.973 ± 0.020 0.986 ± 0.010 0.994 ± 0.006 1.0 0 0 ± 0.001 1.0 0 0 ± 0.001 

QBC 0.996 ± 0.004 0.997 ± 0.002 0.998 ± 0.001 0.998 ± 0.001 0.998 ± 0.001 

LetterUV CSAL 0.992 ± 0.005 0.998 ± 0.002 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

SMCDMAL 0.992 ± 0.006 0.998 ± 0.002 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

PMCQAL 0.987 ± 0.008 0.997 ± 0.003 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

MCDMAL 0.993 ± 0.003 0.998 ± 0.001 0.999 ± 0.0 0 0 1.0 0 0 ± 0.001 1.0 0 0 ± 0.001 

DUAL 0.983 ± 0.014 0.986 ± 0.008 0.990 ± 0.008 0.991 ± 0.008 0.993 ± 0.007 

QUIRE 0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

RMQCAL 0.993 ± 0.004 0.999 ± 0.001 1.0 0 0 ± 0.001 1.0 0 0 ± 0.001 0.999 ± 0.0 0 0 
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Table 6 

Comparison of the AUC values of the 14 datasets (4). 

The labeled samples 5 65 125 185 245 

Database Algorithms Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

RANDOM 0.513 ± 0.059 0.567 ± 0.040 0.567 ± 0.054 0.581 ± 0.042 0.597 ± 0.037 

MARGIN 0.496 ± 0.032 0.625 ± 0.039 0.655 ± 0.054 0.697 ± 0.054 0.726 ± 0.071 

DIVERSITY 0.532 ± 0.063 0.565 ± 0.035 0.608 ± 0.029 0.616 ± 0.033 0.635 ± 0.044 

QBC 0.509 ± 0.049 0.531 ± 0.049 0.541 ± 0.041 0.545 ± 0.042 0.551 ± 0.045 

EEG + CSAL 0.512 ± 0.055 0.589 ± 0.029 0.606 ± 0.036 0.611 ± 0.027 0.618 ± 0.032 

SMCDMAL 0.513 ± 0.046 0.581 ± 0.046 0.614 ± 0.063 0.628 ± 0.079 0.650 ± 0.091 

PMCQAL Null Null Null Null Null 

MCDMAL 0.531 ± 0.042 0.621 ± 0.044 0.655 ± 0.049 0.677 ± 0.055 0.707 ± 0.063 

DUAL Null Null Null Null Null 

QUIRE Null Null Null Null Null 

RMQCAL 0.539 ± 0.049 0.602 ± 0.056 0.657 ± 0.072 0.715 ± 0.088 0.751 ± 0.071 

RANDOM 0.503 ± 0.023 0.544 ± 0.016 0.625 ± 0.028 0.714 ± 0.037 0.777 ± 0.039 

MARGIN 0.984 ± 0.007 0.985 ± 0.005 0.985 ± 0.007 0.986 ± 0.007 0.989 ± 0.005 

DIVERSITY 0.984 ± 0.006 0.984 ± 0.006 0.984 ± 0.006 0.986 ± 0.006 0.988 ± 0.006 

QBC 0.863 ± 0.043 0.963 ± 0.035 0.969 ± 0.037 0.970 ± 0.037 0.975 ± 0.023 

Epilepsy + CSAL 0.984 ± 0.007 0.984 ± 0.007 0.984 ± 0.007 0.984 ± 0.007 0.984 ± 0.007 

SMCDMAL 0.850 ± 0.060 0.978 ± 0.005 0.984 ± 0.004 0.984 ± 0.005 0.986 ± 0.003 

PMCQAL Null Null Null Null Null 

MCDMAL 0.984 ± 0.008 0.985 ± 0.004 0.989 ± 0.004 0.992 ± 0.002 0.994 ± 0.002 

DUAL Null Null Null Null Null 

QUIRE Null Null Null Null Null 

RMQCAL 0.985 ± 0.008 0.990 ± 0.003 0.992 ± 0.001 0.994 ± 0.002 0.994 ± 0.001 

RANDOM 0.831 ± 0.111 0.916 ± 0.015 0.931 ± 0.012 0.941 ± 0.009 0.949 ± 0.009 

MARGIN 0.832 ± 0.114 0.918 ± 0.094 0.939 ± 0.080 0.943 ± 0.079 0.973 ± 0.014 

DIVERSITY 0.801 ± 0.099 0.897 ± 0.008 0.914 ± 0.008 0.922 ± 0.010 0.929 ± 0.007 

QBC 0.710 ± 0.145 0.918 ± 0.020 0.939 ± 0.011 0.946 ± 0.011 0.950 ± 0.011 

Mocap + CSAL 0.743 ± 0.121 0.834 ± 0.076 0.912 ± 0.035 0.934 ± 0.008 0.943 ± 0.004 

SMCDMAL 0.856 ± 0.034 0.937 ± 0.032 0.962 ± 0.008 0.967 ± 0.010 0.969 ± 0.010 

PMCQAL Null Null Null Null Null 

MCDMAL 0.824 ± 0.143 0.937 ± 0.048 0.966 ± 0.011 0.969 ± 0.013 0.970 ± 0.012 

DUAL Null Null Null Null Null 

QUIRE Null Null Null Null Null 

RMQCAL 0.900 ± 0.020 0.954 ± 0.009 0.963 ± 0.011 0.965 ± 0.012 0.969 ± 0.012 

RANDOM 0.806 ± 0.105 0.926 ± 0.026 0.964 ± 0.008 0.982 ± 0.007 0.987 ± 0.008 

MARGIN 0.889 ± 0.038 0.992 ± 0.003 0.996 ± 0.002 0.997 ± 0.002 0.997 ± 0.002 

DIVERSITY 0.858 ± 0.082 0.991 ± 0.004 0.995 ± 0.002 0.997 ± 0.002 0.997 ± 0.002 

QBC 0.892 ± 0.077 0.976 ± 0.020 0.986 ± 0.010 0.992 ± 0.005 0.994 ± 0.003 

Mushroom + CSAL 0.650 ± 0.159 0.993 ± 0.004 0.998 ± 0.002 0.998 ± 0.001 0.999 ± 0.001 

SMCDMAL 0.754 ± 0.174 0.991 ± 0.009 0.994 ± 0.007 0.998 ± 0.002 0.998 ± 0.001 

PMCQAL Null Null Null Null Null 

MCDMAL 0.861 ± 0.062 0.992 ± 0.003 0.995 ± 0.003 0.997 ± 0.001 0.998 ± 0.001 

DUAL Null Null Null Null Null 

QUIRE Null Null Null Null Null 

RMQCAL 0.813 ± 0.119 0.988 ± 0.008 0.996 ± 0.005 0.996 ± 0.005 0.996 ± 0.004 

Table 7 

Win/Tie/Loss Counts of RMQCAL and Other Methods using Paired t-Tests for the 14 datasets. 

1th 2th 3th 4th 5th IN ALL( t -test) 

Algorithms WIN/TIE/LOSS WIN/TIE/LOSS WIN/TIE/LOSS WIN/TIE/LOSS WIN/TIE/LOSS WIN/TIE/LOSS 

RANDOM 5/9/0 8/5/1 12/1/1 12/1/1 12/0/2 49/16/5 

MARGIN 6/7/1 5/7/2 5/5/4 3/8/3 4/6/4 23/33/14 

DIVERSITY 8/6/0 11/3/0 10/4/0 12/2/0 10/4/0 51/19/0 

QBC 7/7/0 11/3/0 10/4/0 12/2/0 13/1/0 53/17/0 

COMPARE1 21/20/1 27/13/2 25/13/4 27/12/3 27/11/4 127/69/14 

CSAL 9/5/0 9/4/1 8/5/1 9/5/0 7/3/4 42/22/6 

SMCDMAL 9/5/0 4/10/0 5/9/0 7/5/2 7/4/3 32/33/5 

PMCQAL 11(7)/3/0 10(6)/4/0 10(6)/4/0 8(4)/6/0 8(4)/3/3 47(27)/20/3 

MCDMAL 4/9/1 5/8/1 6/8/0 6/8/0 6/6/2 27/39/4 

COMPARE2 33(29)/22/1 28(24)/26/2 29(25)/26/1 30(26)/24/2 28(24)/16/12 148(128)/114/18 

DUAL 12(8)/2/0 12(8)/1/1 13(9)/1/0 12(8)/1/1 12(8)/1/1 61(41)/6/3 

QUIRE 7(3)/5/2 7(3)/4/3 7(3)/4/3 6(2)/5/3 7(3)/3/4 34(14)/21/15 

COMPARE3 19(11)/7/2 19(11)/5/4 20(12)/5/3 18(10)/6/4 19(11)/4/5 95(55)/27/18 

IN ALL 78(66)/58/4 82(70)/49/9 86(74)/45/9 87(75)/43/10 86(74)/31/23 419(359)/226/55 
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Fig. 20. Comparisons of the accuracy of the 14 datasets. 

Fig. 20. Continued 
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nalysis of Experiment C: 

Experiment C is the focus of our experiments, through which

he ideals mentioned before have been verified and following con-

lusions have been obtained. 

According to Fig. 20 and Tables 3 –6 , the performance of the

IVERSITY method (one kind of representativeness measure-based

L) in most of the above cases is much better than that of the

ARGIN method (one kind of informativeness measure-based AL)

t the early stage of the AL process; however, the MARGIN method

radually improves with the increased number of labeled samples.

n the other words, we obtained the first conclusion that the time-

iness of AL indeed exists. 

The results shown in Fig. 20 and in the 1st to 4th lines of

able 7 illustrate that RMQCAL is not only significantly better

han the random approach but also much better than MARGIN,

IVERSITY and QBC, which are the components of both RMQ-

AL and the conventional AL methods with a single criterion. The

th line in Table 7 shows that RMQCAL wins or ties account for

early 93 percent of the total, further confirming that through

MQCAL, users can obtain a better classification model with a

ower labeling cost by implementing a combination of multiple

ppropriate AL methods rather than any individual AL method.

herefore, RMQCAL is indeed effective, confirming our second

onclusion. 

Regarding MQCAL with various integration criteria strategies

i.e., IDE, DUAL, SMQCAL, PMQCAL, CSAL and MCDMAL), as the

esults shown in the 6th to 10th lines of Table 7 , although we

ocused our best efforts on tuning their related weight parame-

ers or directly using the recommended values provided in the

orresponding studies, these methods are still not better than

MQCAL; moreover, they are sometimes inferior to conventional

L methods based on a single criterion. We suggest that the

elatively low uniformity and generality of these MQCAL meth-

ds, caused by excessive dependence on empirical parameters and

he tuning process, are the reasons for their suboptimal perfor-

ance. In addition, from the perspective of these results, our

hird conclusion positing that RMQCAL achieves superiority is also

alidated. 

The rest of experimental results from Fig. 20 and the 11th

o 14th lines of Table 7 provide further evidence of the above

hird conclusion. Even compared to the state-of-the-art AL
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methods DUAL and QUIRE, which have high citations, the proposed

RMQCAL is still quite competitive, especially for the large-scale

database tasks. QUIRE and DUAL are completely unusable to ad-

dress big data issues because of our limited runtime environment,

and their corresponding highly complex self-similarity acquisition

and pre-clustering [ 42 ] process inside them. More research about

the computational complexity of each method is discussed in

Experiment D . 

Additionally, the last four diagrams in Fig. 20 also indicate that

except for the EEG + dataset, the AL performance curve on other

large-scale database tasks grows and flattens with less than 100

samples, which also demonstrates the potential value of AL algo-

rithms in big data problems. 

Experiment D. Comparing the CPU time for our RMQCAL and an-

other AL method 

Description of Experiment D: 

In Experiment D , each involved method is run ten times; the

average CPU time for each query in each method is recorded

(in seconds), as shown in Table 8 . The control methods can be

divided into three types: single-query criterion-based AL, MQ-

CAL with different integration criteria strategies, and state-of-the-

art MQCAL. There are two points worth mentioning. First, Null

means that the corresponding AL methods are inestimable and

cannot be used in this dataset under our experimental condi-

tions. Second, the SQCs involved in our RMQCAL method are DI-

VERSITY and MARGIN in the RBF-SVM and QBC, and the in-

tegration criteria strategy is the MC2-based rank aggregation

method. 

Results of Experiment D: 
Table 8 

The comparison of CPU time between our RMQCAL method and another AL

Single-query criterion-based AL MQCAL with different in

Margin Diversity QBC CSAL SMCQAL P

Austra 0.016 0.500 0.094 0.641 0.047 1

Isolet 0.069 0.517 0.469 1.031 0.063 2

Titato 0.031 0.750 0.109 1.109 0.047 2

Vehicle 0.003 0.313 0.094 0.469 0.016 0

Wdbc 0.006 0.422 0.078 0.688 0.016 1

LetterDP 0.031 1.406 0.156 1.828 0.031 9

LetterEF 0.034 1.266 0.156 1.500 0.063 8

LetterIJ 0.047 1.188 0.125 1.750 0.031 9

LetterMN 0.033 1.219 0.172 1.875 0.047 1

LetterUV 0.031 1.281 0.203 1.578 0.016 1

EEG 0.469 14.766 1.328 16.109 0.391 N

Epileptic 0.094 3.969 0.844 5.594 0.125 1

Mocap 1.547 26.672 1.953 35.719 1.766 N

Mushroom 0.172 6.328 0.625 13.500 0.188 N
nalysis of Experiment D: 

The following conclusions are obtained from the results of

xperiment D . (1) Unsurprisingly, all single criterion-based AL

ethods are more efficient than RMQCAL because they are also

omponents of our RMQCAL, and the CPU time of RMQCAL is ap-

roximately equal to the sum of the times spent by each con-

tituent SQC. (2) As expected, the Markov chain does not require

ore CPU time with the added step of sample truncation. (3)

ompared with MQCAL with different integration criteria strategies

nd state-of-the-art MQCAL, RMQCAL is comparatively efficient and

nly second to SMQCAL. We believe that this result is acceptable

ecause the efficiency of SMQCAL comes at the cost of perfor-

ance. The multilayer filter, similar to the design of SMQCAL, can

ndeed reduce the operational time significantly. However, such a

esign will miss many of the samples with high comprehensive

alues, leading to a suboptimal result, as shown in Experiment C .

4) For the large-scale database, this article does not recommend

he use of QUIRE, DUAL and PMQCAL. All of these are too ineffi-

ient and may even fail to work when the operational environment

s not adequately established. 

. Discussion 

In summary, through Experiment A and Experiment B , we

etermine the best rank aggregation methods and the most

uitable SQC combination for the proposed RMQCAL process.

xperiment C and Experiment D further indicate that, compared

ith other methods, RMQCAL can truly help the user establish a

trong prediction model with lower labeling costs and less running

ime. 

However, apart from the above positive views of the pro-

osed RMQCAL, there are still three undesirable issues found

n Experiment C that cannot be ignored: (1) RMQCAL seems to
 method. 

tegration criteria strategies State-of-the-art MQCAL 

MCQAL MCDMAL DUAL QUIRE RMQCAL 

.500 1.031 3.343 0.313 0.719 

.094 1.156 13.721 0.250 1.109 

.938 1.609 3.199 1.453 0.906 

.500 0.531 0.377 0.109 0.406 

.250 0.813 0.677 0.172 0.547 

.766 3.703 10.835 7.875 1.484 

.891 3.230 1.815 6.950 1.422 

.871 3.063 2.782 6.350 1.406 

0.172 3.438 9.665 7.469 0.929 

0.953 3.594 7.781 7.469 0.971 

ull 37.063 Null Null 13.798 

50.650 7.094 397.214 242.540 5.050 

ull 185.578 Null Null 28.938 

ull 13.500 Null Null 7.234 
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e a total failure with dataset Titato ∗; (2) on the basis of the

in/Tie/Loss counts inside the brackets in the 12th line of Table 7 ,

MQCAL is slightly worse than QUIRE if we only consider the

mall-scale dataset cases where QUIRE is available; and (3) even

ithout considering QUIRE and dataset Titato ∗, it is very difficult

or RMQCAL to consistently deliver the best performance in each

teration of the AL process. 

From the first undesirable indication, we suspect that the fail-

re of QBC and DIVERSITY simultaneously, caused by the special

ata distribution of dataset Titato ∗, is the main reason that the

MQCAL is invalid in this dataset. The feature vector of the sam-

les in dataset Titato ∗ is too small, and their feature value is just

ernary (0, 1 or empty). 

Regarding the second undesirable view, we discover that the

MQCAL is slightly worse than QUIRE in the small-scale dataset

asks. However, we still suggest that the second-place performance

f the RMQCAL method relative to the other methods could be ac-

eptable for the following reasons. First, the design intentions of

MQCAL and QUIRE are completely different. The main research

ontent in QUIRE is the design of SQC for both representative-

ess and informativeness measures rather than how to combine

hem together. Conversely, RMQCAL focuses on the design of the

ntegration criteria strategy, which looks more like CSAL, PMQCAL,

MQCAL and MCDMAL. Second, the above experiment confirms

hat RMQCAL can produce an effect similar to a well-designed

UIRE by combining several existing ordinary SQCs. However, the

nvolved SQC can also be QUIRE with small improvements. The

ests in the appendix prove that the combination of QUIRE and

ther SQCs via RMQCAL can provide better results than using

UIRE alone. Of course, this would be at the expense of increas-

ng computational complexity. Third, compared to QUIRE, RMQCAL

as higher efficiency and is available for big data tasks, as dis-

ussed in Experiment D . Moreover, the performance of QUIRE is

ery sensitive to empirical parameters. The performance of QUIRE

an be worse than that of RMQCAL if it has inappropriate parame-

ers. However, the acquisition of optimal parameters requires extra

abeling costs to build the validation set. 

To the third undesirable view, it is well known that the perfor-

ance of AL methods depends not only on their design principles

ut also on many other factors, such as the first batch of labeled

amples, the data distribution of the applied database, the current

ositive or negative labeled sample ratio, and iteration times. It is

xtremely difficult to have one AL method achieve the best results

onsistently in each iteration of the AL process. Therefore, as with

imilar implied views in the related literature [7–9] , we also be-

ieve that one AL method could be regarded as the best only if its

erformance can exceed that of other methods with the maximum

robability. 

It is undeniable that the proposed RMQCAL will not always be

ble to deliver the best performance on every dataset and for each

teration of the AL process. However, because it can usually outper-

orm most of the other methods and is superior to QUIRE on some

pecial occasions, we remain convinced that the proposed RMQCAL

till has a certain progressive significance. 

. Conclusion 

In this paper, a means is presented for training data selection

n AL problems. Unlike conventional AL methods, it can be ensured

hat the samples selected for labeling are overall valuable because

ultiple SQCs are involved in the proposed method and are com-

ined by the introduction of a weighted rank aggregation. 

The proposed RMQCAL avoids building a multi-layered filter-

ike process or solving complex optimization equations, and this

apability is highlighted as the main contribution of this study.

ith respect to advantages, the proposed RMQCAL favorably in-
erits the merits of most existing MQCAL methods. When apply-

ng our RMQCAL, less human intervention is required and fewer

mpirical parameters are used, and any number and type of SQC

an be used and blended into one through dynamical weighting. 

To achieve optimal performance, several combinations of SQCs

dapted from conventional AL methods were applied. Moreover,

xisting ranking aggregation methods (e.g., Bordas, Bucklin voting

nd Markov chain methods) were improved as a key facet of our

MQCAL process. In addition to applying these methods, we em-

loyed other ranking aggregation methods, including Thurstone’s

odel, the cross-entropy Monte Carlo model, and the Condorcet

odel. However, as some methods oppose the AL method in the-

ry or have a run time for realizing one AL iteration that is too

ong, these methods are not used in our MQCAL. Nevertheless,

ther more appropriate methods may exist. 

Our experimental results show that our newly designed RMQ-

AL is more effective than the conventional SQC-based AL method.

elative to other MQCAL models, RMQCAL is also rated among the

est. Either for a conventional classification task or a large-scale

ata classification task, the proposed RMQCAL has the ability to

o well in helping users train a superior classification model with

ewer labeling costs and less running time. Moreover, RMQCAL, in

ur view, can be an appropriate solution for practical issues, espe-

ially when there is no validation set in hand and the labeling cost

f each sample is very expensive. 

Our planned future work will focus on three main points. First,

e will attempt to extend our method to more complex classi-

cation or regression problems, e.g., multiclass and multi-labeled

roblems, and our latest research indicates that RMQCAL also per-

orms well in ordinal regression. Second, the theoretical proof of

MQCAL should be studied further. Finally, we will attempt to ap-

ly this approach to medical lesion recognition. 
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